
Norwegian University of Science and Technology

Elements of
Complex Systems Engineering

Antoine B. Rauzy

Department of Mechanical and Industrial Engineering (MTP)

Norwegian Science and Technology University (NTNU)

and

Chaire Blériot-Fabre

Centrale-Supélec, SAFRAN

Norwegian University of Science and Technology

LECTURE 10.
LIMITS OF CALCULATION

Notions:

• Undecidability

• Computational Intractability

• Sensitivity to Initial Conditions

2

Norwegian University of Science and Technology

LECTURE 10. PART 1.
INTRODUCTION

3

Norwegian University of Science and Technology

Objective of this lecture

Designing models is the only way to tackle the complexity of systems.
However, there are intrinsic and extrinsic limits to modeling.

Obviously, we can only model what we know. This is the problem “black
swans”, i.e. of phenomena that were completely unexpected (extrinsic limits).

But there are also limits due to models themselves:

• Some problems are undecidable, i.e. that there is provably no algorithm to
solve them.

• Some problems are hard/intractable in the sense of the computational
complexity theory, i.e. there is provably no efficient algorithm to solve
them.

• Finally, some problems are extremely sensitive to initial conditions, i.e.
that it is extremely hard to predict the evolution of the system under
study.

The objective of this course is to present these three types of difficulties.

4

Norwegian University of Science and Technology

LECTURE 10. PART 2.
UNDECIDABILITY

5

Norwegian University of Science and Technology

Case Study: Program Equivalence

One of the big issues of software development is to warranty that a new
version of a software does not degrade the functionalities provided by the
previous version. The question is therefore: is there an automatic mean to
check that? More formally:

Program equivalence problem:

Is it possible to design a program E such that for any two programs P and Q,

• E(P, Q) = true if for any input I, P(I) = Q(I), and

• E(P, Q) = false, otherwise.

Important remark: I, P(I), Q(I) but also P, Q and E are eventually sequences of
symbols (strings).

6

Norwegian University of Science and Technology

What to Do?

To solve the program equivalence problem, we bump immediately into a first
problem: there may be infinitely many possible input string I for P and Q.
Therefore, it is possible for our program E to test them one by one.

But even if we let aside this question, we shall see that problem much deeper
than that: in fact, no such program E can exist.

The program equivalence problem is undecidable.

The proof of this result use some of the most important concepts of
mathematical logic.

7

Norwegian University of Science and Technology

Halting Problem

To show the undecidability of the program equivalence problem, we shall

reduce it to the halting problem. The halting problem consists in determining

whether a program terminates on any input. More formally:

Halting problem:

Is it possible to design a program H such that for any program P:

• H(P) = true if P terminates on any input I,

• H(P) = false, otherwise.

As we shall see, this problem also is undecidable and its undecidability will

prove the undecidability of the program equivalence problem.

8

Norwegian University of Science and Technology

Reduction

Claim: Solving the program equivalence problem is at least as hard as solving
the halting problem.

Proof: Let P be a program.

• Let P0 be the program that returns immediately 0 on any input.

• Now consider the following program P’.

P’(I): P(I); return 0

Clearly, P’ is equivalent to P0 if (and only if) P terminates on any input.
Therefore, if we have a program E to test the equivalence of two programs (in
that case P’ and P0), we can easily design a program H to test the termination
of P. QED.

This argument is called a reduction. The program equivalence problem reduces
to the halting problem. Reductions play a central role in computational
complexity theory.

9

Norwegian University of Science and Technology

Undecidability of the Halting Problem (1)

Assume for a contradiction that there exists a program H such that for any
program P and input I,

• H(P, I) = true if P terminates on I; and

• H(P, I) = false otherwise.

H is of course assumed to terminates on pair (P, I)

Note that as P is a sequence of symbols, we can always apply P… to itself. It is
thus easy to design a program D such that for any program P,

• D(P) = true if P applied to itself does not terminate, and

• D(P) loops forever otherwise.

Here is such a program D.

D(P) = if H(P,P) then loop-forever else true.

10

Norwegian University of Science and Technology

Undecidability of the Halting Problem (2)

Now we can apply D to itself:

• If D(D) terminates (and thus returns true), then it means that H(D,D) =
false, that is D applied to itself does not terminate. A contradiction.

• If D(D) does not terminate, then it means that H(D,D) returns true, i.e. that
D applied to itself terminates. A contradiction.

It follows that the program H cannot exist!

11

Theorem: The halting problem is undecidable.

Corollary: The program equivalence problem is also undecidable.

Norwegian University of Science and Technology

Diagonalization (1)

The proof of the undecidability of the halting problem relies on a
diagonalization technique.

In its simplest form, the diagonalization principle is nothing but the so-called
the liar paradox, also called Epimenides the Cretan paradox:

“Cretans are liars*”

Or, even more simply:

“I lie”

Several other versions of this paradox have been proposed, like Russel’s
paradox:

“The barber shaves all the men of the city that do not shave themselves”

12

(*) Cité dans l'épître à Tite, l'un des livres du Nouveau Testament par Paul de Tarse

Norwegian University of Science and Technology

Diagonalization (2)

In mathematics, this technique is used for instance to show that the cardinal
of the power set of a set is always greater than the cardinal of the set.
(Cantor’s theorem):

Let f be a function from E to its power set 2E. It is possible to build the subset
D of E of elements that do not belong to their image by f:

D = {x  E, x  f(x) }

D cannot have any antecedent by f. Assume for a contradiction that there is
an element y of E such that D = f(y). Then,

• If y  D, then by construction D, y  f(y) = D. A contradiction ;

• if y  f(y) = D, then still by construction, y  D. A contradiction.

It follows that f cannot be a one-to-one correspondence. Therefore, E and 2E

do not have the same cardinal. QED.

13

Norwegian University of Science and Technology

An Old and Fascinating Story

19th century: discovery of various mathematical paradoxes.

Beginning of 20th century: David Hilbert’s program:

Formalization of all mathematics.

1931: Kurt Goedel’s incompleteness theorem:

There is no algorithm to decide the truth (or provability)

of statements in any consistent extension of Peano arithmetic

(set theory).

1936: Alan Turing’s seminal articles about calculation

There exist universal calculators.

There is no algorithm to decide whether a

calculator halts on a given input.

David Hilbert

(1862-1943)

Kurt Goedel

(1906-1978)

Alan Turing

(1912-1954)
Turing machine

Norwegian University of Science and Technology

Gödel’s proof is quite technical. So, Alan Turing decided to seek for a more understandable proof.
He invented a very primitive yet very powerful calculator: the Turing machine.

Turing Machines

0 1 1 1 0 1 1 0 ^

1 2

0 0 

^ ^

1 1 

1 1 

Right Infinite Tape (the memory)

Finite State Automaton (the program)

· · ·

(read character, written character, move)

head

3

5 4

* 0 

1 * 

^ ^

1 1 

* 1 

0 1 

halting state

Norwegian University of Science and Technology

Executions

0 1 1 1 0 1 1 0 ^ · · ·1

0 1 1 1 0 1 1 0 ^ · · ·1

0 * 1 1 0 1 1 0 ^ · · ·2

and so on…

Norwegian University of Science and Technology

Universal Turing Machine

• An universal Turing machine U takes the description of a program P (a Turing

machine) and a data D as input. Its execution must be such that U(P, D) = P(D).

• There exists Universal Turing Machines!

• This result reinforces the Church Thesis:

“We shall use the expression 'computable function' to mean a function calculable
by a machine, and let 'effectively calculable' refer to the intuitive idea without
particular identification with any one of these definitions. Then, every effectively
calculable function is a computable function.” [Alonzo Church]

i.e. any computable function can be computed with a Turing machine.

Alonzo Church

(1903-1995)

Norwegian University of Science and Technology

The Halting Problem revisited

Halting Problem: given a Turing machine M and a data D, does M halt on D?

Theorem: the Halting Problem is undecidable.

Proof: by a diagonal argument:

Assume there exists a machine HALT:

HALT M,D = ቊ
1 if M halts on D
0 otherwise

It is easy to create a machine DIAGONAL(M) such that:

DIAGONAL M = ቊ
1 if HALT M,M = 0
loops forever otherwise

Now,

• If DIAGONAL(DIAGONAL) returns 1 (halts), then HALT(DIAGONAL, DIAGONAL)=0 which
means that DIAGONAL(DIAGONAL) does not halt. A contradiction

• If DIAGONAL(DIAGONAL) loops forever, then HALT(DIAGONAL, DIAGONAL)=1, which
means that DIAGONAL(DIAGONAL) halts. A contradiction

Norwegian University of Science and Technology

• Diophantine Equation (10th Hilbert problem): Does a Diophantine equation admit
an integral solution?

– σ𝑎𝑖𝑥𝑖
𝑘𝑖 = 0 with the ai’s and the ki’s integers

[Matiyasevich 1970]

• Post Correspondence Problem: The input of the problem consists of two finite lists
of words v1,…,vn and w1,…,wm of words over some alphabet S having at least two
symbols. Is there a sequence of indices i1,…ik, such that

– 𝑣𝑖1 …𝑣𝑖𝑘 = 𝑤𝑖1 …𝑤𝑖𝑘

• Wang Tiles Problem:

Can a given finite set of Wang tiles tile the plane?

Some Undecidable Problems

Norwegian University of Science and Technology

Consequences for Models Engineering

The marking of a Petri net (a kind of
discrete event system) is a function that
associates with each place the number of
tokens in that place. A Petri net

The reachability problem consists in determining whether a given marking M
is reachable from a given initial marking M0.

Regular Petri Nets Petri nets with inhibitor arcs

Decidable
(Mayr, 1981)

Undecidable
(see Esparza & Nielsen 1995)

And also:
• Reachability in discrete event systems: undecidable
• Equivalence of discrete event systems: undecidable
• …

Norwegian University of Science and Technology

Practical Consequences?

Results by Gödel, Turing et alii have extremely important scientific and
philosophical consequences. Among other things, they show that the
complexity of the world can be described in a book, would it be a “holy”
book… But is there any practical consequence?

The answer is both yes and no:

• Yes, because this forces scientists and engineers to be modest: not
everything is calculable, there are limits to the human genius.

• No, because this does not prevent us to go forward.

In practice, two other limits of the calculability have much more important
consequences on daily science and engineering:

• The complexity of calculations;

• The sensitivity to initial conditions.

21

Norwegian University of Science and Technology

LECTURE 10. PART 3.
COMPUTATIONAL COMPLEXITY

22

Norwegian University of Science and Technology

Case Study: SAT

We shall consider Boolean formulas, i.e. formulas written with variables and
the three connectives (operators) “” (or), “” (and) and “” (not). E.g.

(A  B)  (A  C)

A variable assignment is a function from variables to {0, 1} (false and true).
Variables assignments are lifted up into functions from Boolean formulas into
{0, 1} using the truth tables of “”, “” and “”. Let f and g be two Boolean
formulas and s be a variable assignment, then:

s(f  g) = max(s(f), s(g)), s(f  g) = min(s(f), s(g)), s(f) = 1 - s(f)

A variable assignment s satisfies a Boolean formula f, if s(f) = 1, otherwise it
falsifies f.

SAT problem: Let f be a Boolean formula, is there an assignment that satisfies f?

23

Norwegian University of Science and Technology

Decision Problems

24

SAT is a decision problem, i.e. a problem with a yes/no answer.

Examples decision problems:
• Constraint satisfaction problems
• Halmitonian-path: Let G = (V,E) be a graph. Is there an

path in that graph visiting all vertices and never visiting
twice the same vertex?
The Hamiltonian path is indeed strongly related to the
traveling salesman problem.

It is easy to verify that many other decision problems, including the two
above, can be encoded as SAT instances.

Norwegian University of Science and Technology

What to Do?

SAT problem: Let f be a Boolean formula, is there an assignment that satisfies f?

Candidate solution: try one by one all possible variable assignments until a
solution is found or all possible assignments have been tried.

Problem: there are 2N candidate variable assignments if the formula involves N
variables.

25

Norwegian University of Science and Technology

A small exercise…

?
Question: how many times do you need to
fold the sheet to reach the moon?

Take a sheet of paper. Fold it. Fold it again. And again.

Each time you fold it, it gets twice thicker.

Norwegian University of Science and Technology

Solution
A packet of 500 sheets is about 5 cm thick.

Let us start:

– After 10 folding, we get a 210  1.000 sheets
(10 cm) stack

– After 20 folding, we get a 210 x 10 cm  1.000
x 10 cm = 100 m stack

– After 30 folding, we get a 210 x 100 m  1.000
x 100 m =100 km stack

– After 40 folding, we get a 210 x 100 m  1.000
x 100 km = 100.000 km stack

World record at MIT 13 folding!

 The distance from the earth to the moon varies between 356.375 km and 406.720 km.
On average it is 384.400 km.

 In 42 folding, we get a stack of 22 x 100.000 km = 400.000 km which is way enough to
go to the moon…

 … and if we fold it once more, we can come back

Norwegian University of Science and Technology

Computation Times

We could for instance test first variable assignments with 1 variable set to 1,
then with 2 variables set to 1, and so on.

Computation times to evaluate all configurations with k components out of n
on a computer that evaluates 106 configurations per second.

n/k 2 3 4 5 6 7 10

50 0.001” 0.02” 0.2” 2” 20” 2h 2h50’

100 0.005” 0.2” 4” 1’20” 21’ 4h
6

months

200 0.02” 1” 1’ 40’ 21h 26 days
7

centuries

1000 0.5” 2’50” 10h30’ 6 days
40

years

60

centuries

8 107

centuries

Norwegian University of Science and Technology

What to Do?

SAT problem: Let f be a Boolean formula, is there an assignment that satisfies f?

Candidate solution: try one by one all possible variable assignments until a
solution is found or all possible assignments have been tried.

Problem: there are 2N candidate variable assignments if the formula involves N
variables.

A brute force algorithm is not suitable.

But can we do better?

Is there an algorithm that performs significantly better?

To answer this question, we shall use… Turing machines.

29

Norwegian University of Science and Technology

Complexity of Executions

• Complexity of the execution of the Turing machine T on a data D

– Time complexity: number of steps of the execution

– Space complexity: number of cells used (index of the right most visited cell)

• The Big O notation:

– A Turing machine T has a time/space complexity in O(f), where f(.) is any
function from integer to integer if there exists a constant c such that for any
data D of size n, the time/space complexity of the execution of T on D is less
than c.f(n)

– Linear complexity: O(n)

– Polynomial complexity: O(nk) for an integer k

– Exponential complexity: O(2n)

• We are speaking of worst case complexity.

• Space complexity is much less constraining than time complexity, e.g. a Turing
machine can be of linear complexity in space, but exponential complexity in time

Norwegian University of Science and Technology

From Decidability down to Complexity

There exist universal Turing machines U such that for any program P If P(.) is in
O(f) then U(P, .) is in O(f log f).
Turing machines are thus not only a model of calculator, they are also very
helpful to characterize the complexity of a calculation.

The complexity of an algorithm is in O(f(n)) if the maximum number of steps of
that algorithm on an input of size n is O(f(n)).

The complexity of a problem is in O(f(n)) if the complexity of the fastest
algorithm to solve that problem is in O(f(n)).

Complexity of problems seen by mathematicians (and computer scientists):

Easy Hard

Complexity in g(n)
where g is a polynomial

Complexity in g(n)
where g is not bounded

by any polynomial

Norwegian University of Science and Technology

First Complexity Classes

We can group decision problems into classes of problems having the same
complexity. E.g.

• The class PTIME (resp. PSPACE) if the class of all decision problems that
can be solved in polynomial time (resp. space), i.e. in O(nk). Most often,
PTIME is abbreviated in P.

• The class EXPTIME (resp. EXPSPACE) is the class of all decision problems
that can be solved in exponential time (resp. space), i.e. is in O(2p(n)),
where p(n) is a polynomial in n.

• The class L is the class of all problems that can be solved in O(log(n))
space. As Universal Turing Machines are only equivalent only up to a log
factor, it is better not to define L in terms of time complexity.

A decision problem whose time/space complexity is at least (resp. at most) C
is said C-hard (resp. C-easy).

Norwegian University of Science and Technology

Reductions

• Recall that a reduction is a transformation of one problem into another
problem. It captures the informal notion of a problem being at least as
difficult as another problem.

• If any instance of a problem P can be encoded as an instance of
problem Q, we say that P reduces to Q.

• There are many different types of reductions. The usually considered
reductions are such as polynomial-time reductions or log-space
reductions.

• A decision problem P is complete for a complexity class C if any instance of
any C-easy problem Q can be encoded as an instance of P and the
complexity of the encoding E is itself C-easy, i.e. E(Q) is in C. In general,
more strict conditions are set on the encoding, such as polynomial-time
complexity or log-space complexity.

• C-complete = C-easy  C-hard

Norwegian University of Science and Technology

Non-Deterministic Turing Machines

Non-deterministic Program

Problem: does the input contains the sequence 01011?

1 2

0 0 

^ ^

1 1 

3 6
0 0  1 1 

4 5
0 0  1 1  1 1 

7

The choice of which transition to take is made by an
oracle!

Norwegian University of Science and Technology

Non-Deterministic Turing Machines

It is possible to transform a non-deterministic finite state automaton into a
deterministic one.

1 2

0 0 

^ ^

1 1 

3 6
0 0  1 1 

4 5
0 0  1 1  1 1 

7

{1} {1,2} {1,3}

7

0 0 

0 0 

1 1 

1 1 

1 1 

{1,4}
0 0 

0 0 

{1,5} {1,6}

0 0 

1 1  1 1 

^ ^

… but this transformation is exponential in the worst case (states of the deterministic
automaton are sets of states of the non-deterministic one).

Norwegian University of Science and Technology

Non-Deterministic Complexity Classes

• It is possible to transform any non-deterministic Finite Automaton into a
deterministic one. But what is the cost for the execution?

• We can define complexity classes for non-deterministic Turing machine:

– NP (NPTime): class of problems that can be solved in polynomial time with a
non-deterministic Turing machine

– NPSPACE: class of problems that can be solved in polynomial space with a
non-deterministic Turing machine

– …

• Stephen Cook showed in 1971 that

SAT is NP-complete

i.e. the fundamental result of complexity theory

Stephen Cook
(1939-…)

Norwegian University of Science and Technology

Cook’s Demonstration
• Cook’s demonstration is actually quite close to the reduction we used for

the HAMILTONIAN-PATH problem.

• Assuming that there is a Non-Deterministic Turing machine that solves any
instance I of a problem P in at most n steps where n = c.|I|k steps for some
constants c and k.

• Then we can reduce P to SAT as follows (sketch).

• We create the following variables:

– Tijk : true if the cell of index i of the tape contains the symbol j at step k.

– Hik : true if the head is on cell i at step k.

– Qqk : true if the program is state q at step k.

• Then we encode the behavior of the machine as clauses, e.g.

– Exactly one of the Ti1k, Ti2k,… is true (on symbol per cell at each step)

– Exactly one of the H1k H2k… is true (the head is one cell at each step)

– The successor relation…

– …

Norwegian University of Science and Technology

Polynomial Certificate

• Many problems have been shown NP-complete since Cook’s result.
See [Garey & Johnson 79]

• The class NP may seem quite unnatural: there is no such a thing as
an oracle in our computers, is there?

• … but this class is better characterized by the so-called

Polynomial Certificate:

A problem is NP-easy if given a candidate solution of an instance
of that problem, I can check it in deterministic polynomial time
whether is it actually a solution.

instance ^ ···

instance ^ solution ···^

instance ^ solution ···^ OK ^

DTM

Norwegian University of Science and Technology

A $1 Million Question

P = NP
?

http://www.claymath.org/millennium/P_vs_NP/

http://www.claymath.org/millennium/P_vs_NP/

Norwegian University of Science and Technology

Practical Consequences?

Many practical engineering problems are provably difficult, i.e. for each not
only no efficient algorithm is known, but we can prove that no such an
algorithm can exist. In other words, the complexity of this problem is
independent of any particular technology to solve them.

This applies not only for exact solutions, but also for approximations.

The complexity of a system depends not only on the organization of this
system, but also on our ability to answer questions about its behavior. Many
such questions are either undecidable or difficult (in the sense of
computational complexity theory). An apparently simple system can be thus
in reality a complex one.

40

Norwegian University of Science and Technology

LECTURE 10. PART 4.
SENSITIVITY TO INITIAL CONDITIONS

41

Norwegian University of Science and Technology

Laplace’s Demon

Encouraged by successes of celestial mechanics, Laplace, writes in 1814, in
the introduction of his “Philosophical Essay on Probabilities”:

“We must consider the present state of the universe as the consequence of
its previous state and as the cause of its next state. An intelligence that, at a
given point in time, would know all the forces that animate the nature and
the respective situation of each thing that compose it, and that moreover
would be vast enough to analyze all these data and to embrace in the same
formula the movements of the biggest celestial bodies as well as those of the
lightest atoms, then nothing would uncertain for this intelligence. The future
and the past would be present to its eyes.”

42

“God? Majesty, I don’t need this hypothesis”
Answer of Laplace to Napoléon the first who asked
him why his treaty on cosmology did not mention
God.

Norwegian University of Science and Technology

Poincaré’s Answer

About one century after Laplace, Poincaré wrote in the introduction of
his Probability Calculus :

“A very small cause, that we cannot see, may determine an effect that we
cannot not to see. In this case, we say that this effect is at random. True that if
we knew exactly all laws of the Nature and the exact state of the Universe, we
could predict its evolution. But, even assuming that laws of Nature would
have no more secret for us, we could only know approximately the state of
the Universe. If this principle makes it possible for us to predict the evolution
of a phenomenon with the same approximation as we know its initial
condition, we use to say that this evolution obeys laws. But not all
phenomena are such. It may be the case that small differences in initial
conditions produce very big differences in the evolution. A small
approximation on the initial conditions would thus induce an enormous
mistake in prediction. The prediction is then impossible and we face a
random phenomenon.”

43

Norwegian University of Science and Technology

Lorenz Oscillator (1)

In 1963, the meteorologist Edward Lorenz gave evidence the chaotic nature of
weather forecast. Lorenz equations are a simplified model of weather derived
from fluid mechanics. It shows a chaotic behavior in certain initial condition and
an extreme sensitivity to initial conditions.

44

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜎 𝑦 𝑡 − 𝑥 𝑡

𝑑𝑦(𝑡)

𝑑𝑡
= 𝜌𝑥 𝑡 − 𝑦 𝑡 − 𝑥 𝑡 𝑧(𝑡)

𝑑𝑧(𝑡)

𝑑𝑡
= 𝑥 𝑡 𝑦 𝑦 − 𝛽𝑧(𝑡)

s = 10, b = 8/3, r = 28

“Predictability: Does the Flap of a Butterfly's Wings in Brazil Set off a Tornado in Texas?”

Norwegian University of Science and Technology

Lorenz Oscillator (2)

45

x0 = 1.0, y0 = 2.0, z0 = 3.0

t=100t=20 t=1000

The curve never passes twice by the same point. The space is progressively filled out,
but only in a limited region (looking like butterfly wing)

distance between x0 = 1.0, y0 = 2.0, z0 = 3.0 et x0 = 1.00001, y0 = 2.0, z0 = 3.0

Norwegian University of Science and Technology

LECTURE 10. PART 5.
WRAP-UP & ASSIGNMENT

46

Norwegian University of Science and Technology

Wrap-Up

Some practical engineering problems are undecidable, i.e. there is provably
no way to solve them.

Two other limits of the calculability have much more important consequences
on daily science and engineering:

• The complexity of calculations;

• The sensitivity to initial conditions.

This does not prevent engineers and scientists to go forward, but they should
be aware of these limitations.

47

Norwegian University of Science and Technology

Assignment

See separated presentation.

48

Norwegian University of Science and Technology

Recommend Readings

Reference books on Gödel’s theorem and undecidability:

• Gregory-J Chaitin. The Limits of Mathematics: A Course on Information Theory and the Limits of Formal
Reasoning. Springer London Ltd. 2002. ISBN-13: 978-1852336684.

• Douglas Hofstadter. Gödel Escher Bach: an Eternal Golden Braid. Basic Books 1999. ISBN-13: 978-
0465026562

• Apóstolos K. Doxiàdis and Christos Papadimitriou. Logicomix: An Epic Search for Truth. Bloomsbury
Publishing PLC. 2009. ISBN-13: 978-1596914520

Reference books on computational complexity:

• Michael R. Garey et David S. Johnson. Computers and Intractability: A Guide to the Theory of Np-
Completeness. W.H.Freeman & Co Ltd, 1989. ISBN-13: 978-0716710455.

• Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994. ISBN 0-201-53082-1.

Reference books on chaos theory:

• James Gleick. Chaos. Vintage 2007. ISBN-13: 978-0749386061

49

Norwegian University of Science and Technology

Henri Marie Léonce Fabre (1882 -1984)
is a French engineer and pilot. He
invented the seaplane in 1910.
He graduated from Supélec.

Louis Charles Joseph Blériot (1872 -1936)
is an airplane designer and one of the
pioneer pilot of French aviation. He has
been the first to cross the channel on July
the 25th onboard of the Blériot XI.
He graduated from Ecole Centrale de Paris

50

